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We discuss molecule-flame and laboratory-flame symmetry-adapted formal- 
isms for electron scattering by a spherical top. The molecule-frame formalism 
is based on the fixed-nuclear-orientation approximation, both for electroni- 
cally elastic scattering by a vibrationally rigid molecule and also for the more 
general case where electronic excitation and vibrational degrees of freedom 
are included. The laboratory-frame formalism is based on the exact symmetries 
of the problem, which are carefully related to the approximate symmetries of 
the molecule-frame treatment. We present both the forward and backward 
transformations between the two representations. 
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1. Introduction 

Calculations of electron scattering by molecules can be greatly facilitated by 
means of the fixed-nuclei approximation [1]. In this approximation, valid if the 
collison time is sufficiently short (incident electron energy sufficiently high), the 
scattering calculation is carried out in a body-fixed coordinate system, fixed with 
respect to the target molecule, and the incident electron's motion is decoupled 
from the rotational and vibrational motion of the target molecule in the calcula- 
tion. Then the observable laboratory-frame scattering matrix can be calculated 
from the molecule-frame scattering matrix by an orthogonal transformation [2, 3]. 
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For electronically elastic scattering by diatomic molecules, the method has been 
formulated by Temkin and coworkers [4] and by Burke and Sinfailam [5] with 
further theoretical developments and Calculations by Burke and Chandra [6], 
Chang and Fano [7], and Shugard and Hazi [8]. Choi and Poe [9] have developed 
a generalization in which the projection of scattering electron angular momentum 
along the internuclear axis is treated as a conserved quantity, but other aspects 
of the fixed-nuclei approximation are relaxed. 

Burke, Chandra, and Gianturco [10] have shown how to apply the method to 
scattering by general asymmetric top polyatomic molecules, and further develop- 
ments and calculations have been carried out by Gianturco and Thompson and 
Jain and Thompson [11, 12]. Some interesting sum rules, valid for fixed-nuclei 
scattering of linear, symmetric-top, and spherical-top molecules, have been 
obtained by Shimamura [13-15]. 

The advantage of the fixed-nuclei approximation is that it accounts for the 
approximate channel decoupling that results under many conditions from the 
small ratio of electronic to nuclear masses. This small ratio means, for example, 
that the component lz ( = A) of the scattering electron's orbital angular momentum 
along the internuclear axis is approximately conserved in electronically elastic 
electron-diatom collisions. More generally, if we neglect the kinetic energy 
operator associated with molecular rotation, the molecule-frame scattering matrix 
will be block diagonal in electronic basis functions that transform according to 
the irreducible representations of the molecular point group. Then, we can take 
advantage of the molecular symmetry quite transparently in fixed-nuclei calcula- 
tions. 

Although the usefulness of the fixed-nuclei approximation is beyond dispute, it 
does remain an approximation subject to limitations. It is expected to become 
invalid at energies near threshold [7,8], and recent studies [16] have indicated 
that, even for nonresonant scattering by the nonpolar H2 molecule, there can be 
significant inaccuracies in the usual method of extracting cross sections from 
fixed-nuclei calculations even at energies several times threshold. Moreover, the 
method does not lend itself easily to systematic improvement. As it is usually 
formulated, there is no convenient way to bring in the nuclear kinetic energy as 
a correction. Thus, one might wish to use the fixed-nuclei approximation only 
for small electron-molecule distances or small orbital or total angular momenta, 
where it is most valid, transform these results to a laboratory-frame representation, 
and combine them with less approximate calculations for the long-range or 
high-angular-momentum processes [7, 17, 18]. However, for target molecules 
possessing symmetry, the symmetry operations that are appropriate in the fixed- 
nuclei formalism are only approximate symmetries for the full problem, and this 
complicates both the laboratory-frame treatment and the transformation formal- 
ism. In particular, the question of the correct inclusion of improper operations 
(reflections, inversions, rotary reflections) belonging to the molecular point group 
is not a trivial one. The reason for this is that the rotational wave function of 
the target molecule, taken as rigid, depends only on the Euler angles, for which 
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no improper operations are defined. Nevertheless, there does exist a group of 
exact symmetries, isomorphic to the point group of the target molecule, which 
makes possible, in the exact problem as in the approximate approach, a full 
exploitation of the molecular symmetry. The present paper is concerned with the 
utilization of these symmetries from the points of view of both molecule-fixed 
and laboratory frames and with the relationship between them. 

We are concerned with spherical-top molecules with symmetry. Since nearly all 
molecules of this type are of symriaetry Td or Oh, we confine ourselves to these 
two cases to avoid overburdening the notation. We exhibit both approximate and 
exact symmetries, identify appropriate quantum numbers, and show how to 
transform scattering amplitudes calculated in the fixed-nuclei approximation with 
approximate symmetries to give approximate results for the amplitudes with 
respect to the exact quantum numbers. We also present a few remarks on the 
incorporation of target symmetry into distortion potentials [19] for an approxi- 
mate treatment of electron exchange in the electronically inelastic case. 

A laboratory-frame calculation for scattering by methane was recently carried 
out by two of  us together with Eades, Nam, Thirumalai, Dixon, and Dupuis [20]. 
In this calculation, however, the symmetry was not fully exploited. In a recent 
article by Natanson [21], the selection rules for electron scattering by polyatomic 
molecules are discussed using the formalism of the feasible permutation-inversion 
group, and correct results are presented, but without a full development of the 
quantum numbers and transformation rules. Our approach is somewhat different, 
though essentially equivalent; we feel that it is an appropriate and transparent 
approach to this problem. 

The plan of the paper is as follows: Sect. 2 presents the fixed-nuclei approximation 
[10, 11] for elastic electron-spherical top scattering and obtains coupled-channel 
equations in a way which will facilitate the later transformation to the laboratory 
frame. One motivation for presenting this material in detail is that certain 
properties of the expansion of symmetry-adapted wave functions in terms of 
spherical harmonics need to be treated in considerable detail for our purposes. 
In Sect. 3, the problem is set up in the laboratory frame, and the exact symmetry 
operations are defined and compared with the approximate symmetries. Also, 
the transformation equations between the two systems are exhibited. It should 
be noted that this transformation is different from that used previously in the 
literature [10-15] in that it refers specifically to the exact quantum numbers of 
the system. Section 4 extends the discussion to include electronic excitation; in 
this section we assume that the initial electronic state is the ground state and 
that this is totally symmetric. Section 5 illustrates some of the results of Sects. 2-4 
by specializing them to the case of Td symmetry. Section 6 presents a brief 
summary. 

For the convenience of  the reader, all notation in this paper, including phases, 
is consistent with that of [20], and all angular momentum functions and coupling 
coefficients are defined using the convections of Edmonds [22]. 
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2. Molecule-flame scattering theory for electronically elastic scattering 

We will restrict our discussion to spherical-top molecules and assume that the 
molecule does not vibrate or rotate during a collision with a scattering particle. 
We also assume in this section that only one electronic state of  the molecule is 
considered explicitly, i.e., charge polarization effects are included by effective 
potentials rather than by electronic-state close coupling [23, 24]. If  the scattering 
particle is an electron then we assume that effects arising from exchange of the 
scattering particle with a bound electron are included by an effective exchange 
potential rather than by explicit anitsymmetrization [23, 24]. The frame transfor- 
mations we present do not depend on the use of effective potentials to include 
charge polarization and exchange effects but the explicit form assumed for the 
wave function in this section [Eq. (1) below] does. The generalization to explicitly 
include excited electronic states of the target is considered in Sect. 5. 

The total wavefunction for electronically elastic scattering of a particle by an 
N-electron molecular target in a totally symmetric electronic state can be 
expressed as 

�9 PU(x l , . . . ,  xN, r, 03; G) = FPU(r, 03; G')d~(~)q~P~ Xs)~(G--  G'), 
(1) 

where P stands for a particular irreducible representation of the molecular 
symmetry group, pO for the totally symmetric irreducible component of the 
representations (which is one-dimensional), and U for the component of the 
representations. The vectors xi (i = 1 , . . . ,  N)  are the space-spin coordinates of 
the ta rge t  electrons, and (r, 03, o') or (I:, tr) denotes the space-spin coordinates 
(r, 0, qS, tr) of the scattering particle; the tilde on 03 or ~ denotes that angular 
coordinates are defined with respect to the molecule-fixed frame, and r is the 
distance of the particle from the center of mass of the molecule. For simplicity 
we use 03 to denote 0, ~. FPU(r, to, G') is the space wavefunction for the scattering 

- - p 0 1 /  
electron, qb(cr) is it spin wave-function, and go (x ~ , . . . ,  Xu) is the anitsym- 
metrized electronic space-spin wavefunction for the target. The orientation of 
the target molecule with respect to laboratory-fixed axes is denoted by G, which 
specifies the Euler angles ~, fl, and y; G' denotes a particular fixed value of 
these angles. 

The scattering function can be expanded as 
o~ Hmax(P,  L )  

Feu(~; G') E Y~ --1 P U  P U  ~ = r fHL(r)XHL(W), (2) 
L = 0  H = I  

where xPU(o3) are the symmetrized harmonics which define a basis for t h e  Uth 
component of the Pth irreducible representation of the molecular point group, 
and where H distinguishes between basis functions corresponding to the same 
values of P, U, and orbital quantum number L. In writing this equation we have 
used the fact that FPU(r; G') is independent of G' because ~ is a molecule-fixed 
vector. We have denoted the maximum value of H by Hma• L). In practice, 
the sum over L is cut off at some maximum value Lmax(P ) for which the scattering 
calculations are reasonably converged. Furthermore, for a given P, U some L 
values are missing from Eq. (2) by symmetry. 
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The molecule-frame symmetrized harmonics are expressed as linear combinations 
of the spherical harmonics, i.e. 

X ~ ( o ; ) = 2  P~ ~ " bHtmL YLL(02), (3) 
mL 

where mL is the projection of L along the z-axis of the molecule-fixed frame. 
Equation (3) may be rewritten in a bra-ket  form as 

I LPUH)  = E (LmL ] L P U H ) I L m L )  , (4a) 
mL 

where 

b P~mL = ( L i n t  I L P U H ) .  (4b) 

This form makes closures easier to see and thus will be useful in later sections 
of the paper. Note that in Sect. 3 we will use I G ' L P U H )  to stand for the product 
basis functions ~ ( G -  ' eu  - G )XnL(O2) that occur when Eq. (2) is substituted into 
Eq. (1). In this article we do not explicitly indicate upper and lower limits of 
sums over angular momentum projections since such sums always go over the 
usual range from minus to plus the angular momentum quantum number. In 
practice however some terms may be zero; for example the sum in (3) need only 
include values of my for which PU bnLmL # 0 by symmetry. The expansion coefficients 
for the symmetrized harmonics of spherical top point groups like the tetrahedral 
Td (e.g. CH4) or the octahedral Oh (e.g. SF6) groups as well as for other symmetry 
groups were derived by Altmann and Cracknell [25]. Their real coefficients, which 
we denote by/)P~md or/~P~md, are related to those of Eq. (3) as follows 

I --PUc 
b sglmLI, m g =  0 

P ~  - ( 5 )  
bgLmz" -- l 1 im~+l-~ r~Pgc - i sign -PUs 

[.x/2 k HE[roLl (mt)bHLImLI], m L # O  

where the superscripts c and s respectively stand for the c-type and s-type 
harmonics, i.e. functions with cos toLd) and sin mt4) dependency [25]. Notice 
that although the sum in Eq. (3) in principle has (2L+ 1) terms, in practice many 
of the coeff• vanish by symmetry. Also 6P~m~l and 6PUL~,~Lr are never both 
different from zero. It follows from this fact and from Eqs. (4) and (5) that nu b HLmL 

is always either real or pure imaginary. With these conventions, the XHL(co)PU - 

defined by Eqs. (3) and (5) are always real functions, and they transform under 
the symmetry group according to real, orthogonal, irreducible representations. 

The basis functions PV - XHL(O)) are normalized such that 

f ~ P'U'* ~ PU ~ d w X  n,L ( to ) X  . L  ( tO ) = t~pp,auu,t~.., .  (6) 

The coefficients ptr bnLm~then satisfy the orthonormality relations [10] 
b e' u "* I~ PU ~.~ H'LmLt..'HLm L = (3pp,(3vr;,6.n, (7) 

mL 

and 
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gmax(P) Hmax( P,L) 
kPV* ~ P .  -- ~r~Lm L. (8)  

P U = I  H--1 

It is easier to see these orthonormality relations by using the bra-ket interpretation 
o f  PU bHLm~ introduced in (4b). 

For electronically elastic scattering the effective potential has the full symmetry 
of the molecule, and hence it can be written as [i0, 26] 

v(r, ~) ~ Z = Vhhh(r)Xhah(O)),P~ " ( 9 )  
h - 0  hh=l  

where the number of terms in the sum over hA is the number of generalized 
pO I ~ 

harmonics with P = pO and with A nodes in 0. With XhAx(tO) given by (3) with 
the phase conventions of (4a) and (4b) the potential components V~hA('r) are 
real. The sum over A in Eq. (9) is truncated for practical purposes at some 
maximum value Amax for which the right hand side of (9) converges sufficiently 
well to v(r, ~) .  

We will require matrix elements of the effective potential  between two angular 
basis functions, i.e., 

v P ' U ' P U r  x H'L'HL (r) = ( L' P' U' H '  I v I L P U H )  

f ~ P 'U'*  ~ = d w X n , t ,  (w)v(r ,  ~)XPHUL(~). (10) 

Since v(r, ~ )  is totally symmetric [i.e. it belongs to the first irreducible representa- 
tion (P = pO, U = 1) of the symmetry group] and is a scalar operator, the only 
nonzero integrals are those diagonal in the irreducible representations P[27] and 
consequently in their components U since all the partners (or components) in 
the same basis in a multidimensional representation are taken here as orthogonal 

VHLH, L, or [25, 28]. The nonzero elements will be called eu (L 'PUH' I v lLP UH) ,  and 
they are independent of U. Substituting (3) and (9) into (10) yields 

Amax 
t, PU* b PU b P~ 

m L mi~ X =O h A m A 

I - m* x V~hA(r) dtOYL'~'(w)Y"~A(~)Y'~L(tS). (11) 

The integral in (11) can be done using Eqs. (2.5.6) and (4.6.3) of Edmonds [22]; 
this yields 

)tma x 
,~PU V rr~ (12) VPU'L'HL(r) = (47r)'l/2Vol(r)t~LL'~HH "-{- E E '~H'L'HL;AhA XhA ~, ,', 

A>0 hA 

where 

CH,L,HL;AhA = [(2L+ 1)(2A + 1)(2L'+ 1)/47r] '/2 L' A 
0 0 

vu* M, PU L ' A L )< E bHLmL hxAmx ~--ML,  mx mL bn,L,mL,(--1) ~ 2 Y. bY~ { , (13) 
/ m L, mL mx 



Electron scattering by a spherical top 339 

in which (~ e b }) is a 3j symbol. In addition to symmetry selection rules, the 3j 
selection rules restrict the nonzero elements in (13) as follows 

L +  A + L' = even, (14a) 

[L'-L]-< h --< L '+  L, (14b) 

and 

mE+ m~ - mL' = 0. (14C) 

Although, as stated above, the coefficients PU b HLmL are either real or pure imaginary, 
the selection rules given in (14) exclude the possibility of getting non-real 
coefficients PU CH'L'HL;~h. in (13). It is worth mentioning here that the coefficients 
in (13) corresponding to a multi-dimensional irreducible representation are 
independent of thechoice of the component U of that particular representation. 

To derive the close coupling equations we require that the Schr6dinger equation 
be satisfied in the subspace spanned by the angular basis functions: 

f - PU* ~ dtoX/-/L (to)[~e~(r, o3)- E]FVU(r, o3)= O, (15) 

where 

~2 

~fef~(r, o3) = - V2+ v(r, O3) (16) 
2/x. 

with/.,, the reduced mass and E the total energy. This yields 

[ d2 L(L+I)  2tZr PU ] 2tXr ~' PU PU 
--gTr~+ r2 ~---~ V,-,,.i~,~(r)+ ~ ~ f f , ~ ( r ) = -  h-- r V.,~,_,,,:(r)f ,_,,,:(r), 

H'L' 
(17) 

where Y,' indicates that the sum does not include the term corresponding to 
H ' =  H and L ' =  L, and where ~ is the scattering particle's wave number given by 

~2 = 2/~,.E/fi2. (18) 

The solution to the close coupling equations with scattering boundary conditions 
PU yields the transition matrix elements THLWL'- Section 3 gives the frame trans- 

formation from the molecule-fixed to the laboratory-frame T matrix which 
can be used to calculate the differential do-~,/dl2, integral o'jj,, and momentum 
transfer o-j~ state-to-state (rotationally elastic and inelastic) cross sections for 
initial rotational quantum number j and final rotational quantum number j '. 
Alternatively one can calculate the orientation-averaged cross sections directly 
in the molecule-fixed frame, e.g. the orientation-averaged integral cross section 
is given by 

TPU 2 
(19) 
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Under the assumption that the internal energy differences of the rigid rotator are 
negligible with respect to E, the orientation-averaged cross sections are equal to 
the rotationally summed state-to-state cross sections obtained by the frame 
transformation, i.e. 

# = • o-s;. (20) 
j, 

Notice that in the fixed-nuclei approximation the sum in (20) is independent ofj.  

We note that for calculations the number of coupled Eqs. (17) is made finite by 
imposing an upper limit Lma x On the orbital angular momentum L for every 
irreducible representation. One can use the same Lmax for every P (following the 
procedure suggested by Burke et al. [10] in their discussion of low-energy e- 
scattering by the C2v asymmetric-top H20 for which they used Lm,x = 6 as an 
example) or by choosing a different Lmax for every P (following the procedure 
used by Gianturco and Thompson [11] for Td spherical-top CH4). For accurate 
results the cross section s of interest should be converged with respect to increasing 
L~,x(P) for all P. 

3. Exact symmetries in laboratory frame; transformation between 
molecule-fixed and laboratory-fixed frames 

3.1. Definition of laboratory-frame symmetry-adapted basis functions 

In this subsection we define laboratory-frame symmetry-adapted basis functions 
in a way that is convenient for our purposes. In a laboratory-fixed frame, the 
target molecule is no longer treated as fixed in orientation, but as a spherical top 
capable of rotation relative to the laboratory. We will continue though to treat 
the target as rigid, i.e. non-vibrating. A convenient basis set from which to start 
is that made up of simple products of angular momentum eigenfunctions for the 

top and the scattering particle: 

X~/nj,,,,( G, to) = DJ~,,,j( G) Y~'(to), (21) 

where D~kjmj(G) is a spherical top wave function, G = (a,/3, T) denotes the Euler 
angles fixing the orientation of the molecule relative to the laboratory-fixed axes, 
and to = (0, 4~) stands for the angular coordinates of the electron, again relative 
to the laboratory. The quantum numbers referring to the electron in (21) are l, 
its orbital angular momentum quantum number in the laboratory frame, and m~, 
the projection of l on the laboratory-fixed z-axis. Those for the target molecule 
a re j  for rotational angular momentum, k s for the projection on the molecule-fixed 
z-axis, and m s for the projection on the laboratory-fixed z-axis. It is known [22] 
that the spherical top wave functions in (21) can be expressed as 

D kjmj(G) O) (22) 

where 

/Vj = [ (2 j+  1)/87r2] '/2, (23) 

(J) and @kj,,,j(G) is a finite-rotation matrix element for rotation of the coordinate 
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system through the angles (a,/3, y) while holding the physical system fixed (or, 
equivalently, the inverse rotation applied to the system). 

The basis functions that we will actually use in this section will be linear 
cdmbinations of the functions (21) chosen in such a way that they (a) have 
definite values for the total angular momentum, J., and its projection on the 
laboratory-fixed z-axis, M, and (b) also exploit to the fullest the Td or Oh symmetry 
of the target molecule. Property (a) is easily achieved using Clebsch-Gordan 
coefficients. To achieve property (b), it is necessary to investigate in some detail 
the consequences of the target symmetry for problems of this type. 

The usefulness of Ta or Oh symmetry for our problem lies in the fact that certain 
orientations of the scattering particle relative to the target are symmetry-related 
and hence equivalent. The operations of Ta or Oh for our system are proper and 
improper rotations. These operations are to be formulated as operations on the 
wave functions of target and/or  projectile which bring about the desired change 
in the relative configuration. One possible formulation for a proper rotation is 
to think of a group operation as a rotation of the scattering particle's wave 
function about a molecule-fixed axis. Similarly an improper group operation can 
be formulated as a proper rotation combined with inversion of the scattering 
particle's wave function through the origin at the center of the molecule. These 
operations, however, are only approximate symmetries of the system, since they 
fail to commute with the rotational kinetic energy of the target. In the case of a 
proper rotation, the same change in relative configuration can be brought about 
by applying the rotation in the opposite sense to the target wave function, leaving 
the wave function of the scattering particle unchanged. This operation affects 
only the quantum number kj in (21). The inversion, however, cannot be applied 
to the target wave function, which is a function only of the orientational Euler 
angles. Since any set of Euler angles describes simply a sequence of rotations 
starting from some reference orientation, it is clear that no change in the Euler 
angles can be consistently interpreted as representing an inversion. Nevertheless, 
we can achieve the change in relative configuration defined by an improper group 
operation if we apply the rotational part in the reverse sense to the target wave 
function, followed by inversion of the scattering particle wave function. For basis 
functions in terms of spherical harmonics, like those of (21), this inversion simply 
results in multiplication by (-1)  I. Moreover, the group operations construed in 
this way are exact symmetries of the system. The impossibility of defining the 
inversion operator for the Euler angles is equivalent to the fact that inversion of 
a rigid molecule like methane is "unfeasible" since it would convert a right-handed 
molecule into a left-handed one [29]; however, we shall not require the concept 
of unfeasible operations for the work presented here. 

Projections of the basis functions (21) onto irreducible representations of this 
group are thus obtained by taking linear combinations of target wave functions 
with various kj, sometimes accompanied by multiplication by (--1)/.  W e  thus 
form linear combinations of the basis functions (21) which still have well-defined 
quantum numbers j, l, m:, and ml, and which belong to occurrence h, component 
Iz of irreducible representation p: 
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- a t  .~t , l . ,hl  ( Xjmjm,( a ,  w) = ,.,j,,,jm,, v ,  tO) = qj,~ • B ~ x i l / , , y m , (  G,  to),  (24) 
kj 

where the op~t ~'hjkj are coefficients to be determined, qja is a phase factor chosen for 
convenience, and a is used as a shorthand notation for (p l zh ) .  The coefficients 
B pgt ore clearly related to the b p~' as defined in (3), since both transform functions hjkj hjkj 
of definite angular momentum projection into ones belonging to irreducible 
representations. There are two differences, however. First, the rotational symmetry 
operations are applied to Eq. (24) in the opposite sense to that understood in 
Eq. (3), and to spherical top wave functions, not ordinary spherical harmonics. 
As the detailed analysis given in the appendix shows, this replaces each coefficient 
b~j~j by its complex conjugate. Secondly, the inversion operator applied to Eq. (3), 
with 1 and mt replaced by j and kj would correspond to multiplication by (-1)  j, 
whereas in our case, as we have seen, inversion results in multiplication by (-1)  t. 
This makes no difference if ( j  - l) is an even number; if (j - l) is odd, however, 
the behavior under improper operations of the resulting functions differs by a 
factor of (-1)  from what it would be if ( j -  l) were even. Thus, the coefficients 
b~ j  that give functions belonging to representation p and component/z  in the 
molecule-frame symmetry-adapted basis will produce functions belonging to 
representation p and component/~ in the laboratory-frame symmetry-adapted 
basis when (j - l) is even but will produce functions belonging to representation 
/3 and component/2 in the laboratory-frame symmetry-adapted basis when (j - l) 
is odd, where (/~/2) is the representation and component "conjugate" to (p/x) in 
the sense that it has the same behavior under proper rotations but differs in sign 
in its behavior under improper operations. In the case of Oh, the conjugate 
representation is obtained by interchanging the subscripts g and u. For Td, A I  

and A 2 a r e  conjugate as are T1 and T2. The representation E of T d is its own 
conjugate; however, if the components s, t of E are chosen so as to be respectively 
odd and even under some arbitrarily chosen reflection operation, we have g = t, 
~ = - s .  We thus have 

Bp~t _ i~pt~ * hjkj -- ~'hjkj, if ( j--  l) is even; (25a) 

and 

Bpal = bp~ * if ( j - l )  is odd. (25b) hjkj hjkj, 

This implies, for example, for Td symmetry, that states with p = A1 and j - 5 will 
hA21 always have ( j - l )  even since there are no nonzero Vhjkj coefficients for j--< 5. In 

addition, an initial state withj  = 0 which belongs t o  A 1 for total angular momentum 
0 (when j = l) will belong to representation A2 for odd values of the total angular 
momentum. For another example, we note that for j = 12 there are two A~ sets 
and only o n e  A 2 set. More precisely, let H ~ a x ( p , j )  be the number of occurrences 
of irreducible representation p in the decomposition of spherical harmonics of 
order j according to Eq. (3), and let hm~x(p , j ,  l) be the number of occurrences 
of representation p in the decomposition (24) of the top-projectile product 
functions with fixed j, l, mj, and ml. We then have 

h ~ a x ( p , j ,  l) = H m ~ ( p , j ) ,  if ( j -  l) is even; (25c) 
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hmax(p,j, l) ---- Hmax(J0, k), if ( j -  l) is odd. (25d) 

Thus, the index h runs over the same range on both sides of Eqs. (25a) and (25b), 
but for a given p,/ , ,  and j, there may be more or fewer nonzero b p~hjkj than bhjkj.:5" 

The basis functions (24) can now be further transformed so as to have well-defined 
values of total angular momentum J and its projection M on the laboratory-fixed 
z-axis. The resulting functions are 

o~ff( G, to) = ~ Y, (ImtjmjlljJM)g~jm,( G , to), (26) 
m I mj 

where (Imdmj[ljJM) is a Clebsch-Gordan coefficient. We now consider the 
transformation between the laboratory-frame symmetry-adapted basis functions 
(26) and the molecule-frame ones used in the previous section. 

3.2. Transformation between basis sets 

In ket form, we can denote the laboratory-frame symmetry-adapted basis func- 
tions (26) by [jalJM). As explained below Eq. (4b), the molecule-frame symmetry- 
adapted basis functions with the molecule held rigidly at orientation G will be 
similarly denoted by [GLPUH). Using Eqs. (3), (21), (22), (24), (26), we find for 
the basis transformation: 

(GLPUH [jaIJM) = Njq)~ E E E E PU* p~, �9 �9 b HLmLB hjkj ( lmdmj [ ljJM) 
,~L ~j m~ kj 

x f dG, 6 ( G _  , (j) , f mZ -, m, , do;'YL (to)Yt (w). (27) 

According to the conventions of Edmonds [22] (Chap. 4), the spherical harmonics 
transform from the molecule-fixed to the laboratory-fixed frame as follows 

VT"(w) Y, (0 , , ,;-  = ~ YI (to). (28) 
m/ 

Substituting (28) into (27) and integrating over ta yields 

( GLPUH ]jaIJM) = aLtNjqj~ ~ E E E E b PU*LBPh~( lmdmj l ljJM) 
mL ml m[ mj k, 

~ ( j )  (l) x k:,,,(G)~m/m,(G)6,,:;, (29) 

which explicitly shows that the transformation is diagonal in the orbital quantum 
number, i.e. 1 = L. Summing over m~ in (29) yields 

( G1PUH IjaUM)= Nyqj,, E E Y. E bPL/dLBP~(ImdmjlljJM) 
,~L ,,,~ ,,j kj 

x [ ~(k~) (C) ~ ) : , , ( C )  ]. (30) 

Using Eq. (4.3.1) of Edmonds, the quantity in brackets may be expanded as 
follows 

O) ~0 ~ (j~ImL[jlK, ~ + mL)~(kf+)mLmj+,,,,( C) ~k,m,(G) ~ (G) = 
K = O  

x (jlK, mj + m, ]jmjtm,), (31) 
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where the second Clebsch-Gordan coefficient is written in Edmonds' complex 
conjugate notation introduced in his Eq. (3.5.2). Substituting (31) into (30) and 
summing over mt and mj gives 8JKSM, mj+m, by closure, and finally summing over 
K yields 

P U *  pp,  l . �9 ( J )  (GIPUH[jalJM)=Nj~a • ~ bhjkj Bhjkj(jkjlmL[jlJ, kj+mL)~kj+mL, M(G) (32) 
m L k j  

3.3. Transformation of matrices 

We now discuss the transformation of a matrix, for example the scattering matrix, 
transition matrix, or potential matrix. Without loss of generality we consider the 
transformation of the potential matrix. 

In order to avoid any ambiguity, we will denote the ~th basis function in the 
molecule-fixed frame by O~(o3), where t~ denotes the collection P, U, H, and L, 
i.e. 

| ~(a3) = Id)= I GLPUH). (33) 

We will denote the ath basis function in the laboratory-fixed frame by qb~(G, to) 
where a denotes the collection j, a, l, J, and M and where a denotes the collection 
p,/x, and h, i.e. 

qb~ (to, G) = la)= IjalJM). (34) 

The matrix elements in the molecule-fixed frame are then defined by 

V~,~(r) = f d~ O*,(tS)v(r, a~)O~(o3) (35a) 

=<~'lvl~> (35b) 

= ~(G'-  G)(L'P'U'H'IvILPUH), (35c) 

and those in the laboratory-fixed frame are defined by 

V~,~(r) = I dG f do9 qb*~,(to, G) V(r, to, G)qb~(o~, G) (36a) 

= (a'[ Via). (36b) 

Introducing two unit projection operators of the molecule-fixed flame in (36b), 
we get 

V~,~(r) = (a '  I 2 I~')(~'[ V Z I~)(~ I a) �9 (37) 

Interchanging the sums and the integrations in (37) and using (35b) yields 

V~,~(r) = ~ E (ce'[~') Va,s(r)(~lce). (38) 
& ' ~  

Using the basis transformations given in Eq. (32), Eq. (38) may be explicitly 
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written as 

V,,~ ( r ) = (j '  a' l' J' M'l  V l ja l JM)  
oo gmax ( P',L') 

P' U' L'=O H = I  P U L=O 

Hmax(P.L) 
x 2 a.,.sL, v~.~(r) 2 E P'~' b H ' L ' m  L, 

H--1  m L, kj, 

l~p' tx ' l '*:  , t r t r r  ,t t 
X s ( J  L J ,  kj,+ mu]j kfL m L ' )  

b PU* ply] . • E X .~mLBhjkj(JkjLm~ljU, kj+ .,~) 
m L kj 

x S d G ~  (J')* :~(J) :,,~ kj ,+mL,,M, \ v...I ] ,~ k j+ mL,M t tu ]. (39) 

Since the @~N(G) functions are orthogonal in all three indices, V~,~ (r) is diagonal 
in J and M. The diagonal elements are obtained by using Eq. (4.6.1) of Edmonds 
to do the integral and substituting the values of the normalization constants as 
given in (23). This yields 

v~,Mrja,( r) = (j '  a ' l 'JM] VUalJM ) 

= q*~,qj~(2j'+ 1) ' /2(2j+ 1) ' /2(2:+ 1) -~ 

Hmax(P',l ') Hrnax(P,l) 

vH,~,m tr) 
P '  U '  H ' = I  P U H = I  

b P' u' up'~'l'* 1.1PU* li~ptxl 

,,,L. k: ,,~ kj 

• 6kj,+~r, kj+mL(j'l'J, kj,+ mt,  lj 'kj,I'mt,) 

X (jkylrn L IjU, kj + mE). (40) 

The transformation given in Eq. (40) simplifies in the case that VJ,~rj~l(r) and 
�9 r P ' U ' P U z  x 

consequently VWrBL tr) are matrix elements of a totally symmetric operator, 
such as the v(r, ~ )  of Eq. (9) or the scattering operator. In such a case symmetry 
selection rules require that the matrix be block diagonal in the irreducible 
representations of the molecular point groups, and in their components. The 

�9 rJMp~ : ", P U  nonzero elements in (40) will then be denoted Vj'h't~hltr) and VWrHL(r) ,  and the 
equation may be rewritten as 

V~,~,~,~( r) = (j '  p lzh ' l 'JMI VI jp l zhUM ) 

---- '..ly'h"P" *"P~"ljh ~:--J:" ;' + 1 )a/2(2j + 1 )1/2(2J + 1 ) --1 

H (Pj') Hm.~(p,t ) 
x g 2  E 5: ~ V.,. .~(r) 

P U H ' = I  H - - 1  

bPU l:~ptzl* I.,PU* Dpt~.l 

,,~, kj, mL k: 

X 6ky+mL,,kj+m~(j'l'J, kj, + mL, [j 'kfl 'mL, ) 

/ (jk~lmL ]jlJ, kj + mL), (41) 



346 N. Abusalbi et al. 

where 

V ~ , u , (  r) = < I 'PUH'I v llPUH>8 ( G' - G),  (42) 

and where we have now denoted qja more explicitly as qjrh". 

In order to derive the backward (laboratory-fixed to molecule-fixed) transforma- 
tion, consider 

Va,s(r) = Y~ Y~ (~ I a'><a'l Vl,,><~ [~>, (43) 
ot r o t  

which, using Eqs. (32)-(36b), may be written explicitly as 

V s , s ( r ) =  E E E L E E Nj'N2q?~'@~ 
p ' t x ' h '  p lxh j ' l '  j l  . I ' M '  J M  

t P ' U ' *  n p ' t z ' l "  / . t .  , t  [ . , T t r ,  • ~ E L, rOWrmL,JJh,j,kj,tJ tCj,t mz'lJ t a ,  k;+mL,)  
m L, kj, 

(J')* ' V 8 b PU uP~l* ) E ,-, 
m L kj 

(J) x (jIJ, kj + mL IjkflmD~kj+,.L,M(G). (44) 

On the other hand, Vs,~(r)  may be expressed as in (35c), and we now integrate 
both (35c) and (44) over G. Integrating (35c) yields ( I 'P 'U 'H ' Iv I IPUH) ,  but when 
(44) is integrated over G' all terms except those containing @~o~ ') yield zero. 
Furthermore, since the integral of (35c) is independent of G, only those terms 
containing @~o~ may survive integration of (44). Hence, (l 'P'  U ' H '  I v IIPUH) 
can be written as a sum over only terms with 

J = J ' =  0 (45a) 

m = M ' =  0 (45b) 

and 

kj + mL = kj, + m c  = 0. (45c) 

(45a) implies 

j = l  and j ' = l '  (45d) 

and (45b) implies 

mj § ml = mj ,+  mr = O. ( 4 5 e )  

Since 

f dG '  ~(o~ ') 8~ 2, (46) 

we conclude that 

Va,~ ( r) = (l 'P'  U'H'] v IIPUH> 

R K P ' U ' *  = 8~r 2 ~ ~ ~ Y, NrNtq*ra,qla Y OL'lVH'l'mL, 
p ' t x ' h '  ptzh l" I m L, 

--p','l' ,,, l'mL, 11'1'00) oo V ,. . , r ta t (  r ) • B h , l , , _ m L , ( l  ~ - - m L ' ,  

pu e.l* hn D , (17) x F. 6Ltbm,.LBh,,-,.,.(llOOI l, --mL, 
m L  
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where 

0 ! ! v ! ! V~r,~,rt,~t(r)=(j'=l,p tx h l , J ' = O , M ' = O l V ] j = l ,  ptzhl, J = O , M = O ) .  (48) 

Summing over I and I' and substituting for NI and NL' their values given by (23), 
(47) reduces to 

vP'U'PUI \ H't'H, t r ) =  ~ ~ q*~,q~(21+1)l/2(21'+1) 1/2 
p '~ 'h '  p~h 

~P'U'* up'~'r rp l'mL,[l'l'O0) X S E "Wr,,,L,'-'h'r,-m,A',--rnL,, 
m L ,  r r t  L 

1z ~ grab PU Bp~ l* Hlonl lmL)" X r l 'a'l ' lalk ] Hlm L h l , - - m L \ * * ~ ] l ~  - - m L ,  

According to Eq. (3.5.13) of Edmonds 

(1, --mL, lmL [1100) = (--1)*+m~(2/+ 1) -1/2. 

(49) 

(50) 

Equation (49) then reduces to 

v P ' U ' P U I  \ H'rm tr) ~ ~ q*a'qh~(--1)l+r ~ Y, (--1) r%+mL' 
p'lz'h'  plxh mL ra L, 

I~P'U'* i)p' tx ' l '  l~PU l)plxl * O0 
X , JH , rmL ,~ t .~hT ,_mL , t . ,H lmL .Uh l , _mL V l ,a , l , l a l ( r ) .  (51) 

For the special case of a totally symmetric operator, the matrix is diagonal in P 
and U or p and/z,  and the diagonal elements become 

P~ *~PI'Z { 1~ 1+1' v ~ U , i - r L ( r ) = Z E Z E q r h ' ~ t h ~ - - l J  Z F, (--1) mL+m~' 
p I~ h' h mL mL, 

I~PU* Uptzl" I~PU Op, l* vOOp~ r ~ (52) 
X UH,l ,mL,  L~ h , l , _ m L , u H l m L L I h l , _ r n L  r I 'h'l ' lhl\  F j .  

P~ Using the properties of the coefficients bhlm~, namely those given in (5), (7), and 
(25) and summing over all indices, Eq. (51) reduces to 

( I P ' U ' H ' [ V [ 1 P U H ) =  P'U'* PU,., Ix, qrH' q m  tJ = 1', p '  = P',  = U', h' = H ' ,  l', J '  = O, 

m ' = o l v l j = l , p = P , ~ = O , h = H , l , J - - O , m = o ) ,  (53) 

and Eq. (52) becomes 

( iPUH,  I v l l P U H  )= PC* PU,., p , =  ' -  h . . . .  q r n ' q l n t J  =l ' ,  P , #  - U ,  = H , 1 , J  =0,  

M ' = O I V l j = l , p = P ,  I z = U , h = H , I , J = O , M = O ) .  (54) 

The last equation states that in the fixed-nuclei approximation the potential (or 
scattering) matrix in the molecule-fixed frame and in any irreducible representa- 
tion of the molecular point group is equivalent, up to a phase factor, to the 
potential (or scattering) matrix in the laboratory-fixed frame also in the same 
irreducible representation with a zero total angular momentum. 
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4. Electronic excitation of a nondegenerate electronic state 

We now consider electronically inelastic scattering of an electron by an N-electron 
spherical top molecule. A scattering channel 07 of definite symmetry properties 
is totally defined by specifiying the set of quantum numbers pertaining to the 
internal state of the molecule, the scattering electron's wave number gs, and the 
quantum numbers associated with the scattering electron, particularly its orbital 
angular momentum. 

First we present the theory for a vibrationally rigid molecule; the generalization 
to include vibrational degrees of freedom will be presented in the last paragraph 
of this section. The total wavefunction of the ( N +  1)-electron system for some 
initial scattering channel ~ can be written as 

�9 P U ( x l , . . . ,  XN, r, ~, o') =• E E F~(')u(i)( r, ( ~ ) ) ~ i ( O ' ) ~ P i U i ( X x ,  " ' "  , XN), (55) 
i P~ U~ 

where Y~i stands for a sum over the discrete electronic states of the molecule. We 
have again assumed that we need not explicitly antisymmetrize the wavefunction 
with respect to (r, o3, or) and the coordinates of the bound electrons; this means 
that exchange effects are included by effective exchange potentials [19, 30-32]. 
In the close coupling approximation the sum over electronic states is truncated 
to include the initial state io and one or more other states. For this paper, to 
simplify the sums, we will assume that the molecule is initialy in a nondegenerate 
state, but, following previous work on electron-atom scattering [19], we will show 
how to implement effective exchange potentials with no restrictions on the final 
state or any other state included in the expansion. The scattering function 
Fe(~)u(i)(r, ~ )  in (55) belongs to the U(i)th component of the P(i)th irreducible 
representation, where P(i) is one of the symmetries contained in the direct product 
of Pi, the internal-state irreducible representation of the target in electronic state 
i, and P, the irreducible representation to which the total wavefunction belongs: 

P( i )  = P x  P~. (56) 

The scattering function can then be expanded in the basis of the symmetrized 
harmonics as follows 

eo Hmax(P(i) , l  ) 
-14?p( i )  U( i ) [  r , t X P ( i )  u ( i ) [o3  ,~ (57) Fm~ t3)= ~. E �9 Jml t J HI t J. 

1=0 H = I  

We now consider the complete Schr6dinger equation and require that it is satisfied 
in the subspace spanned by the basis functions defined by coupling the electron 
angular basis functions with the wavefunctions representing the target internal 
states, i.e., 

I d x l ' ' '  do3 do-q~P'u~'(Xl,..., XN)*XP('il;)o(i3(~)*dP'*,'(o') dXN 

x ( ~ - E ) , I , P ~ ( x l , . . .  ,xN, r, o3, or)= 0. (58) 

Substituting (55) and (57) into (58) and integrating over all variables yields the 
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close coupling equations 

d 2 l(l+ 1) t2'~ rP(~)e(~)r.a 
--~r 2 4 r 2 ~ i ] J iHl t .  ; 

" P(i ')  U(i ')  

o~ Hmax(P(i'),  l') 
I z P ( i ' )  U(i ' )P( i )  U( i ) [  ~ r  U( i ' ) [  .~  x ~ }~ --i'WriHl t-,J i ' . ' r  ~-,, (59) 

1'=0 H ' = I  

where g~ is the channel energy given by 

= ~ ( E  - ~,), (60) 

in which ei is the internal excitation energy of the ith electronic state. The potential 
matrix elements in (59) are defined by 

vPtV) v(r)P(i)u(i)r.~ = ( l 'P( i') U ( i') H'lvi,il 1P( i) U ( i)H) i 'H'l'iH1 \ I I  

f d~) XPH(if)u(i')(~)*1@i(r, o ) ) x P ~ i ) U ) i ) ( ( ~ ) ) ,  (61) 

where v~,~(r, ~)  is the effective transition potential for the i-~ i' transition, i.e. 

vvi(r, o3) = I dxl ' ' �9 dxN do-g~Y~'(xl , . . . ,  xN)*~*(o- )v (x l , . . ,  xN, r, o3) 

x qsP'U'(x,,. . . ,  XN)qbi(cr). (62) 

The effective transition potential belongs to one of the irreducible representations 
Pri obtained from the direct product Pi, • Pi- Hence, the only nonzero potential 
matrix elements in (61) are those for which the direct product P(i') • P(i)  also 
contains one of the Pvi. The potential matrix elements are explicitly given by the 
analogues of Eqs. (12) and (13), derived earlier for elastic scattering, i.e. 

( l'P( i') U( i') H '  I Vv,[lP( i) U( i) H) 

Amax 
--1/2 i'i = (4~r) Vo~(r)~3p(r)e(,)~u(v)u(~)~r16H'n+ ~ Y. C P(v)U(v)e(~ ~'~ rr~ H'I'HI;Ah;~ t)Ahx \ ] ,  

k > O  h A 

where (63) 

Ce(i ' )u( i ' )e( ' )u(o-[(2l+l) (2A+l)(2l ,+l) /e~r] l /2(~ A ~) 
H'I'HI;Ah~. - -  0 

1 . ,P( i )U(i)  • ~ (-1)m;b~('it',)~(i')* ~ ~'mm, 
m[ m 1 

be,,,e,,,( l A I ~ ,  x ff, ~, 2 ] (64) Pi'i Ui'i hxAmx \ - m ~  m;, mt 

in which Ur~ is the component of Pi,~. 
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The transformation of these and other matrix elements to the laboratory-fixed 
frame is given by Eq. (40) and the inverse transformation by (51)�9 

Finally we consider the local approximation for the exchange term. The exact 
exchange operators, although nonlocal, have the same transformation properties 
as the local potentials. The variational two-electron exchange term coupling 
electronic states i' and i for an antisymmetrized trial function is 

~f,F~<')u<')(r, to) = - f dXl" �9 �9 dXN do- 6f, 'U*(Xl, . . . ,  xN)~*(o-) 

N 1 
A - - P . U . I  

•  =IE irm_r l  r ' (65) 

I = - N  d X l . , . d x  N d o - ~ P r g * ( x l , . . . , x N ) d ) ~ ( o -  ) 

1 
x "~Nc~P'E(X,,..., xN)Ff")u")(r)*i (o-) ,  (66) 

where ~ is a permutation operator that permutes the molecule-frame space-spin 
coordinates x n and x = (rm, o-) = (r, to, o-) and we have employed hartree atomic 

-',E units. Following Refs. [30] and [31], the operator vi,~ as given in (66) may be 
approximated by the local coupling potential 

47rN f v ~ ( r ) -  K2g(r ' i', i) dx i"""  dXN-i do-N do-~bPY~(Xl,... ,XN-1, r, o-N) 

X dP~(o-)dpPY'(X~,..., XN-~, r, o-)dPi(o-N), (67) 

where a 2 ~K~(r, i'i) is the local kinetic energy corresponding to the translational 
wavefunction FP")U~~ as approximated for the coupling potential V~(r) .  In 
order for the coupled equations satisfied by the F~J)u~J)(r) to be self-adjoint, 
we require 

KZ(r, i', i) = K2,(r, i, i'). (68) 
^E Furthermore, in order for v~i(r) to transform the same as v~,i under the symmetry 

operations of the molecular point group we require K~(r, i', i) to transform 
according to be the ground state, only functions transforming according to the 
totally symmetric representation, We assume therefore that K2(r, i', i) is approxi- 
mated by some physical model, e.g. the self-consistent models previously applied 
to electron-atom scattering [19], that satisfies both of these requirements. Then 
vff~(r) transforms as the direct product P~, x P~ and we may treat it the same as 
v~,i(r) or Eq. (62). 

So far this section has been explicitly concerned with electronic excitation of  a 
vibrationally rigid molecule, but it is easily generalized to the case of vibrational 
or vibrational-plus-electronic excitation. This simply involves replacing the 
r P'~(xl . . . .  , XN) by vibronic functions O'iPiUi(xl,..., XN, Q 1 , . . . ,  Q 3 N A - - 6 ) ,  where 

�9 3 N A - - 6  . . NA is the number of atoms in the molecule, {Qi}~=l are the vibrational coordi- 
nates, and P~U~ now denote vibronic (rather than electronic) symmetry species. 
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5. Specialization to a molecule with symmetry Td 

In the special case of elastic scattering by a closed-shell molecule with symmetry 
Td in its ground electronic state, assumed totally symmetric as in CH4, the 
effective potential has the full symmetry of the molecule, i.e. it transforms under 
the symmetry group operations according to the A1 irreducible representation, 

hence the potential matrix, and consequently the scattering matrix, is block 
diagonal in P and U. The potential matrix elements are then given by Eqs. (12) 
and (13). Furthermore, the potential (or scattering) matrix elements transform 
from one reference frame to the other according to Eqs. (41) and (52). It is 
convenient to choose the phase factor qja in (24) as 

qi,, = qJt~ = exp {i[kPm~x(j, h)Tr/4]}, (69) 

where k p~'max~J,:" h) is the maximum value of kj for which bPj~j is nonzero. This 
choice ensures the reality of the potential matrix elements in the laboratory frame, 
and it is consistent with the choice made in Ref. [12], where electronically elastic 
scattering by C H 4  in the laboratory-fixed frame was discussed. In that reference, 
for which the initial rotational state was restricted to be the ground state, only 
functions transforming according to the totally symmetric irreducible representa- 
tion A 1 w e r e  retained in the expansion of the rotor functions given in Eq. (24) 
[20]. We need then consider only p = p0 and/x = 1 in (41). In the molecule-fixed 
frame, however, even to compute cross sections involving the ground rotational 
state, we must consider all five symmetries. Table 1 gives the number H m a x ( P  , 1) 

of symmetry functions with given P, U, and I for the case of a spherical top with 
Ta symmetry for the first thirteen values of/. A numerical application to electroni- 
cally and vibrationally elastic scattering of electrons by the ground rotational 
state of CH4 at 10 eV will be considered in the next paper [35]. 

As an example of electronically inelastic scattering we note that electron scattering 
b y  C H  4 involving the excitation of the T2 electronic state from the ground state 

Table 1. The values of H m a x ( P  , l)  for the first few l's retained 
in the expansion of continuum functions for a T d point group 

P 

1 A 1 A 2 E T l T 2 

0 1 0 0 0 0 
1 0 0 0 0 1 
2 0 0 1 0 1 
3 1 0 0 1 1 
4 t 0 1 1 1 
5 0 0 1 1 2 
6 1 1 1 1 2 
7 1 0 1 2 2 
8 1 0 2 2 2 
9 1 1 1 2 3 

10 1 1 2 2 3 
11 1 0 2 3 3 
12 2 1 2 3 3 



352 N. Abusalbi et al. 

has been studied experimentally [33]. The possible irreducible representations 
P(i) to which the scattering electron wavefunctions belong in this case are listed 
in Table 2 for all possible symmetries P of the total wavefunction and P~ of the 
molecule. 

6. Summary 

We have shown how electron scattering by a spherical top of  Td symmetry may 
be treated in a laboratory-frame formalism with full inclusion of  molecular 
symmetry. The treatment requires an especially careful consideration of the 
meaning of  improper rotations. We have also presented an explicit transformation 
relating the laboratory-frame results to a molecule-frame treatment in which the 
approximate symmetries appropriate to that frame are also fully incorporated. 

Acknowledgment. The authors are grateful to Grigory Natanson for comments on the original 
manuscript. This work was supported in part by the National Science Foundation under grant 
nos.CHE83-17944 and CHE83-11450. 

Appendix: Proof of Eqs. (25a)-(25b) 

The purpose of this appendix is to derive the relations betweens between the 
llpul pu coefficients "-'hjkj and bhjkj used in the text. Before beginning the derivation proper, 

some matters of notation must be discussed. 

According to the conventions of Edmonds used in this paper, the matrices @U)(G) 
with elements ~ ! m ( G )  refer to transformations of spherical harmonics Y ' f (o )  
under rotations of the coordinate system through the Euler angles G = (a,/3, y), 
while holding the physical system fixed. For studying the consequences of sym- 
metry, however, it is more convenient to think in terms of rotations applied to 
the physical system while keeping the coordinate system fixed. This is especially 
true in view of the fact that we need to apply rotations to part of our system, 
either projectile or target, while keeping the other part fixed. Accordingly, we 

Table 2. A 1 and T 2 close coupling scheme 
for a Td spherical top 

AI A1 A1 
T2 T2 

A2 A1 A2 
T~ 7"1 

E A~ E 
7"2 TI, T2 

TI A, T 1 
T2 A~,E, T~, T2 

T2 At 7"2 
T2 &, E, T~, T2 

P Pi P(i) 
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introduce matrices A(1)(G), with elements A~!,,(G) which describe rotations of 
the physical system (wave functions) through the Euler angles G without changing 
the coordinate system. Because these matrices are unitary, and because a rotation 
applied to the physical system has formally the same effect as the inverse rotation 
applied to the coordinate system, we have: 

A~!m(G) = --~(~)*,~m,,tc~ v , .  (A1) 

We must also distinguish between rotations applied to the projectile (electron), 
and to the target (molecule), and between rotations referred to lab-fixed or 
molecule-fixed axes. Accordingly, for each set of Euler angles G, we denote the 
operation of rotating the projectile through angles G with respect to a lab-fixed 
axis by U(G), and the same rotation appplied to the target by a script q/(G). A 
tilde ( - )  above a U or U indicates that the rotation is with respect to molecule- 
fixed coordinates: thus, U(G)  and 0~ (G) denote rotation of projectile and target, 
respectively, through angles G with respect to a molecule-fixed coordinate system. 

For projectile wave functions whose angular part consists of either lab-fixed 
m L spherical harmonics y~'l(to) or molecule-fixed spherical harmonics YL (w), we 

have 

(lrn~[U(G)[lmt)= A~]m,(G); and 

(LM'cl (I(G)ILmL) = A(.,~m~(G). (A2) 

An element A of  the abstract symmetry group ( Td ) consists of a rotation through 
Euler angles GA, followed by the inversion i if A is an improper operation. Such 
a group element has two realizations of interest to us, depending on whether the 
rotational part of A is applied to the projectile or to the target. 

In the first realization, appropriate in the fixed-nuclei approximation, the rotation 
and the inversion if present are both applied to the projectile wave function, with 
respect to a molecule-fixed axis. We denote this realization by Ap. Defining 

e(A) = 1 if A is a proper rotation; 
(A3) 

e(A) = i if A is an improper operation, 

where i denotes the inversion operator, we find that the operator for Ap can be 
expressed as s (A) t~(GA). In a representation in terms of molecule-fixed spherical 
harmonics, the matrix representing Ap is block diagonal with a submatrix A (L)(Ap) 
for each L. The effect of the inversion i on the spherical harmonics is just 
multiplication by ( -1 )  L. Accordingly, we define 

eL(A) = 1 if A is a proper  rotation; 
(A4) 

eL(A) = ( -1 )  L if A is an improper operation, 

and obtain 

A(L)(Ap) = eL(A)A(L)( GA). (A4a) 

In the second realization, which corresponds to an exact symmetry of the system, 
the rotational part of A is applied in the inverse sense to the target wave function, 



354 N. Abusalbi et al. 

still with respect to molecule-fixed axes. The inversion, if present, must still be 
applied to the projectile wave function. This realization, which we denote by At, 
effects the same change of projectile coordinates relative to the target as Ap. 
Using again the definition (A3), and with the understanding that i is always 
applied to the projectile wave function, we have e (A)U(GA)  for the operator 
representing A,, where G denotes the Euler angles for the rotation inverse to G: 
if G = (a,/3, y), then G = ( -% -/3, - a ) .  

We must now determine the effect of'the rotational part of At on the target wave 
functions with definite total angular momentum quantum number j, and molecule- 
and lab-fixed projections kj and mj respectively. We will define a new set of basis 
functions by 

( G [jkjmj) = O) - NhAk, m,( a ) ,  (A5) 

with Nj as defined in Eq. (23). Applying a//(Ga) to (A5), we find: 

(Gl~(t~a)ljkjm~) = f (a l~( t~A)la ' )  d a '  (a']jkjm~). (A6) 

the matrix element (G] ~ (CA)[ G') is evidently a delta function at the orientation 
G' which is taken into G by G//((~A). We thus have 

( G[ o~ (~--JA) [jkTmj) = ( G' [jkjmj) -- N A (j) r [~'~ (A7) j kjmjk U ), 

with G' determined by 

~ ( ( ~ . ) ~ ( a ' )  = [ ~ ( C ' ) ~ ( t ~ . ) ~ ( G ' ) ] ~ ( C ' )  = ~ ( t~ ' )~ ( (~ . )  = ~ ( a ) ,  (AS) 

which has the solution 

~(G' )  = ag(G)~ll(GA), (A9) 

0~/((~') = 0~/((~A) 0~/((~)" (A10) 

Because of (A10), we have 

A(J)( (~ ' )  = A( / ) (  (~A)A 0 ) ( ( ~ ) .  (A11) 

Inserting (Al l )  into (A7), we find 

" - x ~ A(J) r ~  ~AO) r ~  ~ll( aA)( a[jkjmj}= Nj ~ ~k, kjt'JA) k'mj~ I 
k; 

so that 

= ~ A (k~j((~A)( C [jkjmj}, (A12) 
kj 

(j' kjmJ[ ~l ( C_.a)[jkjmj) = 6jy6,.=,A ~)k;( C. A), (A13) 

which because of unitarity is equivalent to 

(j'k~m~[~l(C,a)[jk~mj) = ~ 8 A (j)*rr' ~ (A14) 'jj' mjmj kjkjk1~'A]" 

The rotational part of At is thus given by (A14); it is diagonal in j and mj, and 
it couples different values of kj via the complex conjugate of a A ~ matrix. The 



Electron scattering by a spherical top 355 

inversion, if present, still acts only on the projectile wave function. A matrix 
representation for At can thus be defined with respect to a basis made up of 

p roduc t s  (Gljkjm~)Y~,(~) of projectile and target wave functions. Because of 
(A14), and because eA just results in multiplication by (-1)t, such a representation 
will be block-diagonal in j, k, mj, and ml, and independent of mj and ml. The 
block referring to given j and l [repeated (2j+ 1)(2l+ 1) times as m s and ml run 
over their allowed values] will be denoted by A(J~ Using (A4), (A4a), and 
(A14), we find: 

A(V~(At) = e l (A)A  (J)*( GA). (A15) 

Computing A(J)*(GA) from Eqs. (4) and (4a) we obtain 

A(0)(A,) = e(t_j)(A)A(J)*(Ap). (A16) 

Now suppose that we have succeeded in block-diagonalizing the matrices A(J)(Ap) 
into direct sums of irreducible representations ~(P)(A): 

S- 'A  (J)(Ap) S = E E A (P~(A), (A17) 
p h 

where the summation sign denotes the block-diagonal direct sum; the index p is 
for irreducible representations, and multiple occurrences of the same irreducible 
representation are accounted for by the sum over h. The indices labelling rows 
and columns of the transformed matrices in (A17) are now puh, and the matrix 
elements of S are given by 

(jkj] S]puh ) = bPykj. (m18) 

Taking the complex conjugates on both sides of (A17), using (A16), and recalling 
that the A(P~(A) are real, we find 

S*-IA(V)(At)S * = e(l_j)(A) E • A (P)(A) �9 (A19) 
p h 

Because of (A18) and the definitions given in Sect. 3, (A19) is equivalent to (25a) 
and (25b). This completes the derivation. 

We finish by discussing two of the practical aspects of these considerations. First 
consider the effect of complex conjugation in Eq. (25b). Since, as noted below 
Eq. (5), bPh~kj is always pure real or pure imaginary, the complex conjugations 
just correspond to a change in phase. Furthermore, the replacement of p/z by/~/2 
is just a relabelling. Since one may always make a change of phase, provided it 
is done consistently, one may simply replace each Bhjkj by the corresponding 
bhjkj and one will still obtain correct results. This does correspond to relabelling 
states with (j - I) odd, though, so if one is calculating matrix elements connecting 
states with (j  - l) even to those with (j - l) odd, one will have to include coupling 
between A1 states and those relabelled Aa. When laboratory-frame symmetry is 
treated by the formalism of Sect. 3 though, A~ and A2 are rigorous symmetries 
and are completely uncoupled. 

Secondly we consider another aspect of the symmetry conjugation of Eq. (25b). 
If this subtlety were ignored, the transformation to the laboratory frame would 
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s t i l l  y i e l d  c o r r e c t  r e su l t s ,  w i t h i n  a p h a s e  f a c t o r ,  f o r  s c a t t e r i n g  m a t r i x  e l e m e n t s  

w i t h  ( - 1 ) J + l = ( - 1 )  j '+r ,  b u t  o n e  m i g h t  i n c o r r e c t l y  c o n c l u d e  t h a t  t h o s e  w i t h  

( - 1 ) J + t  # ( - 1 )  j '+v, a re  ze ro .  W h e n  j = 0, n o n z e r o  s c a t t e r i n g  m a t r i x  e l e m e n t s  w i t h  

( -  1) j '§ r ( _  1)t o c c u r  o n l y  f o r  j '  -< 6 in  t h e  c o r r e c t  c a l c u l a t i o n ,  so t h e  q u a n t i t i v e  

ef fec t  o f  t h e  c o n j u g a t i o n  is s m a l l  f o r  t h e  r e s u l t s  in  [35] .  I t  c o u l d ,  h o w e v e r ,  b e  

e x p e c t e d  to  b e  v e r y  i m p o r t a n t  f o r  s o m e  e x c i t e d - s t a t e - t o - s t a t e  c r o s s  s e c t i o n s .  
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